How do you simplify (sqrt(5k^4)+3sqrt(2k))/sqrt(3k^3)5k4+32k3k3?

1 Answer
Jul 19, 2017

See a solution process belowL

Explanation:

First, we can rationalize the denominator by multiplying the expression by the appropriate form or 11 to remove the radical from the denominator while keeping the value of the expression the same:

(sqrt(5k^4) + 3sqrt(2k))/sqrt(3k^3) => sqrt(3k^3)/sqrt(3k^3) xx (sqrt(5k^4) + 3sqrt(2k))/sqrt(3k^3) =>5k4+32k3k33k33k3×5k4+32k3k3

(sqrt(3k^3)(sqrt(5k^4) + 3sqrt(2k)))/(sqrt(3k^3)sqrt(3k^3)) =>3k3(5k4+32k)3k33k3

(sqrt(3k^3)sqrt(5k^4) + 3sqrt(3k^3)sqrt(2k))/(sqrt(3k^3))^2 =>3k35k4+33k32k(3k3)2

(sqrt(3k^3)sqrt(5k^4) + 3sqrt(3k^3)sqrt(2k))/(3k^3)3k35k4+33k32k3k3

We can simplify the numerator using this rule for radicals:

sqrt(color(red)(a)) * sqrt(color(blue)(b)) = sqrt(color(red)(a) * color(blue)(b))ab=ab

(sqrt(3k^3)sqrt(5k^4) + 3sqrt(3k^3)sqrt(2k))/(3k^3) =>3k35k4+33k32k3k3

(sqrt(3k^3 * 5k^4) + 3sqrt(3k^3 * 2k))/(3k^3) =>3k35k4+33k32k3k3

(sqrt(15k^7) + 3sqrt(6k^4))/(3k^3)15k7+36k43k3

We can simplify the radicals using this rule for radicals:

sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))ab=ab

(sqrt(15k^7) + 3sqrt(6k^4))/(3k^3) => (sqrt(k^6 * 15k) + 3sqrt(k^4 * 6))/(3k^3) =>15k7+36k43k3k615k+3k463k3

(k^3sqrt(15k) + 3k^2sqrt(6))/(3k^3)k315k+3k263k3

If necessary, we can simplify further as:

(k^3sqrt(15k) + 3k^2sqrt(6))/(3k^3) => (k^3sqrt(15k))/(3k^3) + (3k^2sqrt(6))/(3k^3) =>k315k+3k263k3k315k3k3+3k263k3

(color(red)(cancel(color(black)(k^3)))sqrt(15k))/(3color(red)(cancel(color(black)(k^3)))) + (color(red)(cancel(color(black)(3)))k^2sqrt(6))/(color(red)(cancel(color(black)(3)))k^3) => sqrt(15k)/3 + (k^2sqrt(6))/k^3 =>

sqrt(15k)/3 + (sqrt(6))/k