How do you simplify #sqrt(44/9)*sqrt(18/7)*sqrt(35/72)#?

1 Answer
Feb 18, 2017

#sqrt(44/9)*sqrt(18/7)*sqrt(35/72)=1/3sqrt55#

Explanation:

#sqrt(44/9)*sqrt(18/7)*sqrt(35/72)#

= #sqrt((2xx2xx11)/(3xx3))*sqrt((2xx3xx3)/7)*sqrt((7xx5)/(2xx2xx2xx3xx3))#

= #sqrt((cancel(2xx2)xx11)/(cancel(3xx3)))*sqrt((cancel2xxcancel(3xx3))/cancel7)*sqrt((cancel7xx5)/(cancel2xxcancel(2xx2)xx3xx3))#

= #sqrt((11xx5)/(3xx3)#

= #1/3sqrt55#