How do you simplify sqrt(3x^3) * sqrt(6x^2)?

1 Answer
Sep 3, 2015

sqrt(3x^3)*sqrt(6x^2) = sqrt(18x^5)=3xsqrt(2x)

(assuming x >= 0)

Explanation:

If sqrt(a) and sqrt(b) are Real, then a, b >= 0 and sqrt(a)sqrt(b) = sqrt(ab)

In our case, if both sqrt's are Real, then:

sqrt(3x^3)*sqrt(6x^2) = sqrt(3x^3*6x^2) = sqrt(18x^5) = sqrt((3x^2)^2*2x)

= sqrt((3x^2)^2)sqrt(2x) = 3x^2sqrt(2x)