How do you simplify sqrt(3/16)*sqrt(9/5)31695?

2 Answers
Apr 23, 2017

sqrt(3/16)*sqrt(9/5) = (3sqrt(15))/2031695=31520

Explanation:

Note that if a, b >= 0a,b0 then:

sqrt(ab) = sqrt(a)sqrt(b)ab=ab

If a > 0a>0 and b >= 0b0 then:

sqrt(a/b) = sqrt(a)/sqrt(b)ab=ab

If a >= 0a0 then:

sqrt(a^2) = aa2=a

When simplifying square roots of rational expressions, I like to make the denominator square before splitting the square root. That way we don't have to rationalise the denominator later...

sqrt(3/16)*sqrt(9/5) = sqrt(3/16)*sqrt((9*5)/(5*5))31695=3169555

color(white)(sqrt(3/16)*sqrt(9/5)) = sqrt(3/4^2)*sqrt(45/5^2)31695=3424552

color(white)(sqrt(3/16)*sqrt(9/5)) = sqrt((3*45)/(4^2*5^2))31695=3454252

color(white)(sqrt(3/16)*sqrt(9/5)) = sqrt(3*45)/sqrt(4^2*5^2)31695=3454252

color(white)(sqrt(3/16)*sqrt(9/5)) = sqrt(3*3^2*5)/sqrt((4*5)^2)31695=3325(45)2

color(white)(sqrt(3/16)*sqrt(9/5)) = (sqrt(3^2)*sqrt(15))/sqrt(20^2)31695=3215202

color(white)(sqrt(3/16)*sqrt(9/5)) = (3sqrt(15))/2031695=31520

Apr 23, 2017

(3sqrt15)/2031520

Explanation:

sqrt(3/16)*sqrt(9/5)31695

:.=sqrt3/sqrt16*sqrt9/sqrt5

:.=sqrt3/sqrt(4*4)*sqrt(3*3)/sqrt5

:.sqrt4*sqrt4=4,sqrt3*sqrt3=3

:.=sqrt3/4*3/sqrt5

:.=(3sqrt3)/(4sqrt5)*sqrt5/sqrt5

:.=sqrt5*sqrt5=5

:.=(3sqrt15)/(4*5)

:.=(3sqrt15)/20