How do you simplify #( sqrt 2 + sqrt 5)^4#?
1 Answer
Apr 11, 2016
Explanation:
Note that
So let us square
#(sqrt(2)+sqrt(5))^2#
#=(sqrt(2))^2+2(sqrt(2))(sqrt(5))+(sqrt(5))^2#
#=2+2sqrt(10)+5#
#=7+2sqrt(10)#
Then:
#(7+2sqrt(10))^2#
#=7^2+2(7)(2sqrt(10))+(2sqrt(10))^2#
#=49+28sqrt(10)+40#
#=89+28sqrt(10)#
Check
Let's check the calculation a different way.
From the Binomial Theorem:
#(a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4#
So:
#(sqrt(2)+sqrt(5))^4#
#=(sqrt(2))^4+4(sqrt(2))^3(sqrt(5))+6(sqrt(2))^2(sqrt(5))^2+4(sqrt(2))(sqrt(5))^3+(sqrt(5))^4#
#=4+8sqrt(10)+60+20sqrt(10)+25#
#=89+28sqrt(10)#