How do you simplify ( sqrt 2 + sqrt 5)^4?

1 Answer
Apr 11, 2016

(sqrt(2)+sqrt(5))^4 = 89+28sqrt(10)

Explanation:

Note that (sqrt(2)+sqrt(5))^4 = ((sqrt(2)+sqrt(5))^2)^2

So let us square (sqrt(2)+sqrt(5)) twice:

(sqrt(2)+sqrt(5))^2

=(sqrt(2))^2+2(sqrt(2))(sqrt(5))+(sqrt(5))^2

=2+2sqrt(10)+5

=7+2sqrt(10)

Then:

(7+2sqrt(10))^2

=7^2+2(7)(2sqrt(10))+(2sqrt(10))^2

=49+28sqrt(10)+40

=89+28sqrt(10)

Check

Let's check the calculation a different way.

From the Binomial Theorem:

(a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4

So:

(sqrt(2)+sqrt(5))^4

=(sqrt(2))^4+4(sqrt(2))^3(sqrt(5))+6(sqrt(2))^2(sqrt(5))^2+4(sqrt(2))(sqrt(5))^3+(sqrt(5))^4

=4+8sqrt(10)+60+20sqrt(10)+25

=89+28sqrt(10)