How do you simplify sqrt(2/3)*sqrt(6/5)?

2 Answers
Jun 9, 2018

(6sqrt5)/15

Explanation:

Use the rule for radicals of the same degree:

sqrta * sqrtb=sqrt(a*b)

sqrt(2/3)*sqrt(6/5)=sqrt(2/3*6/5)=sqrt(12/15)

now use the rule for radicals of the same degree:

sqrt(a/b) = sqrta/sqrtb

sqrt(12/15)=sqrt12/sqrt15

now rationalize the denominator:

sqrt12/sqrt15*sqrt15/sqrt15 = sqrt180/15 = (6sqrt5)/15

Jun 9, 2018

(2*sqrt(5))/5

Explanation:

We get by
sqrt(a)*sqrt(b)=sqrt(ab) for a,b>=0
so we obtain

sqrt(2/3)*sqrt(6/5)=sqrt(4/5)=2/sqrt(5)=(2*sqrt(5))/5