How do you simplify sqrt(18a^2)*4sqrt(3a^2)?

1 Answer
Jun 2, 2018

See a solution process below:

Explanation:

First, use this rule for radicals to rewrite the expression:

sqrt(color(red)(a)) * sqrt(color(blue)(b)) = sqrt(color(red)(a) * color(blue)(b))

sqrt(color(red)(18a^2)) * 4sqrt(color(blue)(3a^2)) =>

4sqrt(color(red)(18a^2)) * sqrt(color(blue)(3a^2)) =>

4sqrt(color(red)(18a^2) * color(blue)(3a^2)) =>

4sqrt(54a^4)

Next, rewrite the expression as:

4sqrt(color(red)(9a^4) * color(blue)(6))

Now, use this rule for radicals to complete the simplification:

sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))

4 * sqrt(color(red)(9a^4)) * sqrt(color(blue)(6)) =>

4 * 3a^2 * sqrt(6) =>

12a^2sqrt(6)