How do you simplify sqrt (18) / (sqrt (8) - sqrt (2))1882?

1 Answer
May 16, 2018

Simplify each radical individually, and then work with the fraction as a whole. You will find that the simplified version is 33

Explanation:

First, we'll simplify the numerator:

sqrt(18)=sqrt(9xx2)18=9×2

sqrt(9xx2)=sqrt(9)xxsqrt(2)9×2=9×2

sqrt(9)xxsqrt(2)=3xxsqrt(2)=color(orange)(3sqrt(2)9×2=3×2=32

Now the expression can be written as:

color(orange)(3sqrt(2))/(sqrt(8)-sqrt(2))3282

Next, we'll simplify the denominator:

sqrt(8)-sqrt(2)=sqrt(4xx2)-sqrt(2)82=4×22

sqrt(4xx2)-sqrt(2)=sqrt(4)xxsqrt(2)-sqrt(2)4×22=4×22

sqrt(4)xxsqrt(2)-sqrt(2)=2xxsqrt(2)-sqrt(2)=2sqrt(2)-sqrt(2)4×22=2×22=222

2sqrt(2)-sqrt(2)=(2-1)sqrt(2)=color(blue)(sqrt(2))222=(21)2=2

Re-write the expression again:

color(orange)(3sqrt(2))/color(blue)sqrt(2)322

Finally, we can simplify the fraction:

(3cancel(sqrt(2)))/cancel(sqrt(2))=color(green)(3)