How do you simplify sqrt(15n^2)*sqrt(10n^3)?

2 Answers
Apr 13, 2017

5n^2sqrt(6n)

Explanation:

Demonstrating a principle by example:

sqrt(an)=sqrt(a)xxsqrt(n)

sqrt(4xx25)=2xx5=10
sqrt(4xx25)=sqrt(100)=10
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given:" "sqrt(15n^2)xxsqrt(10n^3)

" "[sqrt(3)xxsqrt(5)xxcolor(blue)(sqrt(n^2))]xx[sqrt(2)xxsqrt(5)xxcolor(red)(sqrt(n^2))xxsqrt(n)]

larr" "color(blue)(n)[sqrt(3)xxsqrt(5)]" "xx" "color(red)(n)[sqrt(2) xxsqrt(5)xxsqrt(n)]
|" "......................................................................................................
|
|
rarr" "color(brown)(n)[sqrt(3)xxcolor(blue)(sqrt(5))]" "xx" "color(brown)(n)[sqrt(2) xxcolor(blue)(sqrt(5))xxsqrt(n)]

" "color(blue)(5)color(brown)(n^2)[sqrt(3)xxsqrt(2)xxsqrt(n)]

color(white)()

" "5n^2sqrt(6n)

Apr 13, 2017

5n^2sqrt(6n)

Explanation:

color(blue)(sqrt(15n^2)*sqrt(10n^3)

Split the equation using

color(brown)(sqrt(xy)=sqrtx*sqrty

So,

rarrsqrt15*color(red)(sqrt(n^2))*sqrt(10)*color(red)(sqrt(n^2))*n

rarrcolor(red)(n*n)*underbracesqrt5*sqrt3*underbracesqrt5*sqrt2*n

color(green)(rArr5n^2*sqrt(6n)

Hope this helps... :)