How do you simplify sin2(π2x)2sin2x+1?

1 Answer
Nov 12, 2016

Expand:

=sin(π2x)×sin(π2x)2sin2x+1

Expand sin(π2x) using the formula sin(AB)=sinAcosBcosAsinB.

=(sin(π2)cosxcos(π2)sinx)(sin(π2)cosxcos(π2)sinx)2sin2x+1

Evaluate sin(π2) and cos(π2):

=(1(cosx)0(sinx))(1(cosx)0(sinx))2sin2x+1

=(cosx)(cosx)2sin2x+1

=cos2x2(1cos2x)+1

=cos2x2+2cos2x+1

=3cos2x1

Hopefully this helps!