How do you simplify root7(x^2) and write it in exponential form?

1 Answer
Mar 12, 2018

x^(2/7

Explanation:

Before we start, let's revise the exponent rules,

  1. Product rule: a^x xxa^y=a^(x+y
  2. Quotient rule: a^x -:a^y=a^(x-y
  3. Power rule: (a^x)^y=a^(xy)
  4. Power of a product rule: (ab)^x=a^x xx b^x
  5. Power of a quotient rule: (a/b)^x=(a^x)/(b^x)
  6. Zero exponent: a^0=1
  7. Negative exponent: a^-x=1/a^x
  8. Fractional exponent: a^(x/y)=root(y)(a^x)

Now let's begin,

root(7)(x^2)

Using rule 8 - Fractional exponent, we get,

x^(2/7