How do you simplify #root7(x^2)# and write it in exponential form?

1 Answer
Mar 12, 2018

#x^(2/7#

Explanation:

Before we start, let's revise the exponent rules,

  1. Product rule: #a^x xxa^y=a^(x+y#
  2. Quotient rule: #a^x -:a^y=a^(x-y#
  3. Power rule: #(a^x)^y=a^(xy)#
  4. Power of a product rule: #(ab)^x=a^x xx b^x#
  5. Power of a quotient rule: #(a/b)^x=(a^x)/(b^x)#
  6. Zero exponent: #a^0=1#
  7. Negative exponent: #a^-x=1/a^x#
  8. Fractional exponent: #a^(x/y)=root(y)(a^x)#

Now let's begin,

#root(7)(x^2)#

Using rule 8 - Fractional exponent, we get,

#x^(2/7#