How do you simplify #root7(x^2)# and write it in exponential form?
1 Answer
Mar 12, 2018
Explanation:
Before we start, let's revise the exponent rules,
- Product rule:
#a^x xxa^y=a^(x+y# - Quotient rule:
#a^x -:a^y=a^(x-y# - Power rule:
#(a^x)^y=a^(xy)# - Power of a product rule:
#(ab)^x=a^x xx b^x# - Power of a quotient rule:
#(a/b)^x=(a^x)/(b^x)# - Zero exponent:
#a^0=1# - Negative exponent:
#a^-x=1/a^x# - Fractional exponent:
#a^(x/y)=root(y)(a^x)#
Now let's begin,
Using rule 8 - Fractional exponent, we get,