How do you simplify root3(3/4)334?

2 Answers
Apr 23, 2017

root(3)(3/4) = root(3)(6)/2334=362

Explanation:

For any non-zero values of a, ba,b we have:

root(3)(a/b) = root(3)(a)/root(3)(b)3ab=3a3b

root(3)(a^3) = a3a3=a

So we find:

root(3)(3/4) = root(3)((3*2)/(4*2)) = root(3)(6/2^3) = root(3)(6)/root(3)(2^3) = root(3)(6)/2334=33242=3623=36323=362

Notice how making the denominator into a perfect cube before splitting the radical allows us to avoid having to rationalise the denominator afterwards.

Apr 23, 2017

color(blue)(root3(6)/2362

Explanation:

root3(3/4)334

:.=root3(3)/root3(4) xx root3(4)/root3(4) xx root3(4)/root3(4)

:.=color(blue)(root3(4)*root3(4)*root3(4)=4

:.=root3(48)/4

:.=root3(3*2*2*2*2)/4

:.=(cancel2^color(blue)1root3(6))/cancel4^color(blue)2

:.=color(blue)(root3(6)/2