How do you simplify #root(3)96#? Prealgebra Exponents, Radicals and Scientific Notation Cube Root 1 Answer sente May 4, 2016 #root(3)(96)=2root(3)(12)# Explanation: Using the fact that for #a, b >= 0# we have #root(n)(ab) = root(n)(a)*root(n)(b)#: #root(3)(96) = root(3)(8*12)# #=root(3)(8)*root(3)(12)# #=root(3)(2^3)*root(3)(12)# #=2root(3)(12)# Answer link Related questions How do you simplify #root(3)432#? How do you simplify #root(3)(-54)#? How do you simplify #root(3)(-1080)#? How do you simplify #root(3)(375)#? How do you simplify #root(3)(162)#? How do you simplify #root3(72)#? How do you find the cube roots #root3(27)#? How do you find the cube roots #root3(729)#? How do you find the cube roots #root3(64)#? How do you find the cube roots #root3(8000)#? See all questions in Cube Root Impact of this question 5696 views around the world You can reuse this answer Creative Commons License