How do you simplify (\root [ 11] { 9x ^ { 6} y } ) ^ { 7}?

1 Answer
Apr 20, 2018

" "
color(brown)((\root [ 11] { 9x ^ { 6} y } ) ^ { 7}= [9^(7/11)][x^(42/11)][y^(7/11)]

Explanation:

" "
We have color(red)((\root [ 11] { 9x ^ { 6} y } ) ^ { 7}

Useful Exponent formula:

color(blue)((a^m)^n = a^(mn)

color(blue)(root(n)m = m^(1/n)

color(blue)(root(n)(a^m) = a^(m/n)

Consider:

(\root [ 11] { 9x ^ { 6} y } ) ^ { 7} given expression

Simplify this expression using the formula list above.

[root(11)(9)*root(11)(x^6)*root(11)(y)]^7

rArr [root(11)(9^1)*root(11)(x^6)*root(11)(y^1)]^7

rArr [9^(1/11)*x^(6/11)*y^(1/11)]^7

rArr 9^(7/11)*x^(42/11)*y^(7/11)

Hence,

color(brown)((\root [ 11] { 9x ^ { 6} y } ) ^ { 7}= [9^(7/11)][x^(42/11)][y^(7/11)]

Hope it helps.