How do you simplify csc(-x)/cot(-x)?

2 Answers
Sep 5, 2016

csc(-x)/cot(-x)=-csc x/-cot x=(csc x)/(cot x)=(1/sinx)/(cos x/sin x)

=1/cos x=sec x.

Sep 5, 2016

sec(x)

Explanation:

We have: (csc(- x)) / (cot(- x))

Let's apply the fact that csc(x) and cot(x) are odd functions:

= (- csc(x)) / (- cot(x))

= (csc(x)) / (cot(x))

Then, let's apply two standard trigonometric identities; csc(x) = (1) / (sin(x)) and cot(x) = (cos(x)) / (sin(x)):

= ((1) / (sin(x))) / ((cos(x)) / (sin(x)))

= (1) / (sin(x)) cdot (sin(x)) / (cos(x))

= (1) / (cos(x))

Finally, let's apply another standard trigonometric identity; sec(x) = (1) / (cos(x)):

= sec(x)