How do you simplify cotx(sinx−cscx)? Trigonometry Trigonometric Identities and Equations Fundamental Identities 1 Answer James May 7, 2018 The answer −cosx(cos2x)sin2x=−cosx⋅cot2x Explanation: show below cotx(sinx−cscx) cotx⋅sinx−cotx⋅cscx cotx=cosxsinx cscx=1sinx cosxsinx⋅sinx−cosxsinx⋅1sinx cosx−cosxsin2x=cosx⋅sin2x−cosxsin2x=−cosx(1−sin2x)sin2x 1−sin2x=cos2x −cosx(cos2x)sin2x=−cosx⋅cot2x Answer link Related questions How do you use the fundamental trigonometric identities to determine the simplified form of the... How do you apply the fundamental identities to values of θ and show that they are true? How do you use the fundamental identities to prove other identities? What are even and odd functions? Is sine, cosine, tangent functions odd or even? How do you simplify secxcos(π2−x)? If cscz=178 and cosz=−1517, then how do you find cotz? How do you simplify sin4θ−cos4θsin2θ−cos2θ using... How do you prove that tangent is an odd function? How do you prove that sec(π3)tan(π3)=2√3? See all questions in Fundamental Identities Impact of this question 2156 views around the world You can reuse this answer Creative Commons License