How do you simplify (cot θ + tan θ) sec θ?

1 Answer
Jun 23, 2016

Recall that tantheta = sintheta/costheta.

Explanation:

Since cottheta =1/tantheta, cottheta = 1/(sintheta/costheta)= costheta/sintheta#.

Also, sectheta = 1/costheta.

=(sintheta/costheta + costheta/sintheta)1/costheta

=((sin^2theta + cos^2theta)/(costhetasintheta))1/costheta

Recall the Pythagorean Identity sin^2theta + cos^2theta = 1:

=1/(costhetasintheta costheta)

=1/(cos^2thetasintheta)

Use the rearranged form of the Pythagorean identity presented above.

=1/((1 - sin^2theta)sintheta)

=1/(sintheta - sin^3theta

We could have also finished with sec^2thetacsctheta, because 1/sintheta = csctheta and 1/costheta = sectheta

Hopefully this helps!