How do you simplify (cot^2 x)/(csc x +1)?
1 Answer
May 5, 2016
The identity you're looking for is
You can derive this by starting from
sin^2x + cos^2x = 1
cancel(sin^2x/sin^2x)^(1) + stackrel(cot^2x)overbrace(cos^2x/sin^2x) = stackrel(csc^2x)overbrace(1/sin^2x)
\mathbf(1 + cot^2x = csc^2x)
Thus:
color(blue)(cot^2x/(cscx + 1))
= (csc^2x - 1)/(cscx + 1)
= ((cscx - 1)cancel((cscx + 1)))/cancel((cscx + 1))
= color(blue)(cscx - 1)
...if and only if
If
Therefore, this answer is valid when