How do you simplify cos(2 arcsin x)? Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Cesareo R. Jun 1, 2016 cos(2arcsin(x))=1-2x^2 Explanation: Using cos(a+b)=Cos(a) Cos(b) - Sin(a) Sin(b). If a = b then cos(2a)=1-2sin^2(a) so cos(2arcsin(x))=1-2x^2 Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate tan(arcsin (0.31))? What is \sin ( sin^{-1} frac{sqrt{2}}{2})? How do you find the exact value of \cos(tan^{-1}sqrt{3})? How do you evaluate \sec^{-1} \sqrt{2} ? How do you find cos( cot^{-1} sqrt{3} ) without a calculator? How do you rewrite sec^2 (tan^{-1} x) in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate sin^-1(0.1)? How do you solve the inverse trig function cos^-1 (-sqrt2/2)? How do you solve the inverse trig function sin(sin^-1 (1/3))? See all questions in Inverse Trigonometric Properties Impact of this question 36173 views around the world You can reuse this answer Creative Commons License