How do you simplify ((c^2d^2 )/ (cd^3)) * (d^2 / c^2)^3(c2d2cd3)(d2c2)3 leaving only positive exponents?

1 Answer
Mar 15, 2018

((c^2d^2)/(cd^3))*((d^2)/(c^2))^3=color(blue)(d^5/c^5(c2d2cd3)(d2c2)3=d5c5

Explanation:

Simplify.

((c^2d^2)/(cd^3))*((d^2)/(c^2))^3(c2d2cd3)(d2c2)3

Apply power rule of exponents: (a^m)^n=a^(m*n)(am)n=amn

((c^2d^2)/(cd^3))*(d^((2*3))/(c^((2*3))))(c2d2cd3)(d(23)c(23))

Simplify.

((c^2d^2)/(cd^3))*((d^6)/(c^6))(c2d2cd3)(d6c6)

Remove parentheses.

(c^2d^2)/(cd^3)*(d^6)/(c^6)c2d2cd3d6c6

Apply product rule of exponents: a^ma^n=a^(m+n)aman=am+n

No exponent is understood to be an exponent of 11.

(c^2d^((2+6)))/(c^((1+6))d^3)c2d(2+6)c(1+6)d3

Simplify.

(c^2d^8)/(c^7d^3)c2d8c7d3

Apply quotient rule of exponents: (a^m)/(a^n)=a^(m-n)aman=amn

c^((2-7))d^((8-3))c(27)d(83)

Simplify.

c^(-5)d^5c5d5

Apply negative exponent rule: a^(-m)=1/a^mam=1am

d^5/c^5d5c5