How do you simplify (9 sqrt(50x^2)) / (3 sqrt(2x^4))950x232x4?

1 Answer
Apr 14, 2016

15/x15x

Explanation:

11. Start by factoring out 33 from the numerator and denominator.

(9sqrt(50x^2))/(3(sqrt(2x^4))950x23(2x4)

=(3(3sqrt(50x^2)))/(3(sqrt(2x^4)))=3(350x2)3(2x4)

=(3sqrt(50x^2))/(sqrt(2x^4))=350x22x4

22. Multiply the numerator and denominator by sqrt(2x^4)2x4 to get rid of the radical in the denominator.

=(3sqrt(50x^2))/(sqrt(2x^4))((sqrt(2x^4))/(sqrt(2x^4)))=350x22x4(2x42x4)

33. Simplify.

=(3sqrt(100x^6))/(2x^4)=3100x62x4

=(3*10sqrt(x^6))/(2x^4)=310x62x4

=(3*5x^(6(1/2)))/x^4=35x6(12)x4

=(15x^3)/x^4=15x3x4

33. Use the exponent quotient law, color(purple)b^color(red)m-:color(purple)b^color(blue)n=color(purple)b^(color(red)m-color(blue)n)bm÷bn=bmn, to simplify x^3/x^4x3x4.

=15x^(3-4)=15x34

=15x^-1=15x1

=color(green)(|bar(ul(color(white)(a/a)15/xcolor(white)(a/a)|)))