11. Start by factoring out 33 from the numerator and denominator.
(9sqrt(50x^2))/(3(sqrt(2x^4))9√50x23(√2x4)
=(3(3sqrt(50x^2)))/(3(sqrt(2x^4)))=3(3√50x2)3(√2x4)
=(3sqrt(50x^2))/(sqrt(2x^4))=3√50x2√2x4
22. Multiply the numerator and denominator by sqrt(2x^4)√2x4 to get rid of the radical in the denominator.
=(3sqrt(50x^2))/(sqrt(2x^4))((sqrt(2x^4))/(sqrt(2x^4)))=3√50x2√2x4(√2x4√2x4)
33. Simplify.
=(3sqrt(100x^6))/(2x^4)=3√100x62x4
=(3*10sqrt(x^6))/(2x^4)=3⋅10√x62x4
=(3*5x^(6(1/2)))/x^4=3⋅5x6(12)x4
=(15x^3)/x^4=15x3x4
33. Use the exponent quotient law, color(purple)b^color(red)m-:color(purple)b^color(blue)n=color(purple)b^(color(red)m-color(blue)n)bm÷bn=bm−n, to simplify x^3/x^4x3x4.
=15x^(3-4)=15x3−4
=15x^-1=15x−1
=color(green)(|bar(ul(color(white)(a/a)15/xcolor(white)(a/a)|)))