How do you simplify # ((8b^4)/(2c^9))^3#?

1 Answer
Apr 12, 2016

#((8b^4)/(2c^9))^3# can be simplified to #(64b^12)/c^27 #

Explanation:

First, solve what you can inside the parentheses, then start using the other exponentiation:

#((8b^4)/(2c^9))^3# but #8/2 = 4/1# so

#((8b^4)/(2c^9))^3 = ((4b^4)/(c^9))^3# and then apply the exponentiation

#((4b^4)/(c^9))^3 = ((4^(1*3)b^(4*3))/c^(9*3))#
#4^3 = 64#, #1*3 = 3#, #4*3=12# and #9*3 = 27# so
#((8b^4)/(2c^9))^3 = (64b^12)/c^27 #