How do you simplify #(5x^2y^3)^2*(2x^3y^4)^3# and write it using only positive exponents?
2 Answers
Explanation:
#"by appling the "color(blue)"laws of exponents"#
#•color(white)(x)(a^m)^(n)=a^((mxxn))larr(color(red)(1))#
#•color(white)(x)a^mxxa^n=a^((m+n))#
#(color(red)(1))" is extended to include all factors inside the parenthesis"#
#rArr(5x^2y^3)^2=5^((1xx2))xx x^((2xx2))xxy^((3xx2))#
#color(white)(xxxxxxxx)=5^2xx x^4xx y^6=25x^4y^6#
#rArr(2x^3y^4)^3=2^((1xx3))xxx^((3xx3))xxy^((4xx3))#
#color(white)(xxxxxxxx)=2^3xx x^9xxy^(12)=8x^9y^(12)#
#rArr(5x^2y^3)^2xx(2x^3y^4)^3#
#=25x^4y^6xx8x^9y^(12)#
#=(25xx8)xx(x^4xx x^9)xx(y^6xxy^(12))#
#=200xx x^((4+9))xxy^((6+12))#
#=200x^(13)y^(18)#
See a solution process below:
Explanation:
First, use these rules for exponents to eliminate the outer exponents for each term:
or
Next, rewrite the expression as:
Now, use this rule of exponents to complete the simplification: