How do you simplify (4[sqrt5] )/( 7[sqrt2] - 7[sqrt5])?

1 Answer
Jun 8, 2016

(4sqrt5)/(7sqrt2-7sqrt5)=-(20+4sqrt10)/21

Explanation:

(4sqrt5)/(7sqrt2-7sqrt5)=(4sqrt5)/(7(sqrt2-sqrt5))

Now multiplying numerator and denominator by (sqrt2-sqrt5), which is conjugate of denominator, we get

(4sqrt5)/(7(sqrt2-sqrt5))xx(sqrt2+sqrt5)/(sqrt2+sqrt5)

= (4sqrt5(sqrt2+sqrt5))/(7(sqrt2-sqrt5)(sqrt2+sqrt5))

= (4sqrt10+4*5)/(7(2-5))

= (20+4sqrt10)/(7*(-3))

= -(20+4sqrt10)/21