How do you simplify #(3x^3y^4)(2x^2y^6)#?

1 Answer
Mar 16, 2016

# = 6 x^5 y^10 #

Explanation:

#(3x^3y^4)(2x^2y^6)#

# = 3 * x^3 * y^4 * 2 * x^2 * y^6 #

# = 3 * 2 * color(blue)( x^3 * x^2) * color(green)( y^4 * y^6 #

# = 6 * color(blue)( x^3 * x^2) * color(green)( y^4 * y^6 #

As per property:
#color(blue)(a^m * a^n = a^(m+n)# , applying the above to exponents of #x# and #y#.

# = 6 * color(blue)( x^(3 +2)) * color(green)( y^(4 +6) #

# = 6 * color(blue)( x^5 * color(green)( y^10 #

# = 6 color(blue)( x^5 color(green)( y^10 #