How do you simplify (3 sqrt(x^3)) times (4 + 2 sqrt(xy))(3x3)×(4+2xy)?

1 Answer
Jan 8, 2018

See a solution process below:

Explanation:

First, multiply each term within the right parenthesis by the term on the left:

(color(red)(3sqrt(x^3))) xx (4 + 2sqrt(xy)) =>(3x3)×(4+2xy)

(color(red)(3sqrt(x^3)) xx 4) + (color(red)(3sqrt(x^3)) xx 2sqrt(xy)) =>(3x3×4)+(3x3×2xy)

12sqrt(x^3) + 6sqrt(x^3)sqrt(xy)12x3+6x3xy

Next, we can use this rule to combine the radicals in the term on the right:

sqrt(color(red)(a)) * sqrt(color(blue)(b)) = sqrt(color(red)(a) * color(blue)(b))ab=ab

12sqrt(x^3) + 6sqrt(color(red)(x^3))sqrt(color(blue)(xy)) =>12x3+6x3xy

12sqrt(x^3) + 6sqrt(color(red)(x^3) * color(blue)(xy)) =>12x3+6x3xy

12sqrt(x^3) + 6sqrt(x^4y)12x3+6x4y

Then, we can use the opposite of the above rule to reduce the radicals:

sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))ab=ab

12sqrt(x^3) + 6sqrt(x^4y) =>12x3+6x4y

12sqrt(color(red)(x^2) * color(blue)(x)) + 6sqrt(color(red)(x^4) * color(blue)(y)) =>12x2x+6x4y

12sqrt(color(red)(x^2))sqrt(color(blue)(x)) + 6sqrt(color(red)(x^4))sqrt(color(blue)(y)) =>12x2x+6x4y

12xsqrt(x) + 6x^2sqrt(y)12xx+6x2y