"This one goes quite nicely, thankfully. A minor adjustment of"
"the given can add a bit of computational complexity. Anyway,"
"here we go:"
\qquad \qquad \qquad { 2 sqrt{2} - 2 sqrt{3} }/{ 4 sqrt{3} - 4 sqrt{2} } \ = \ { 2 ( sqrt{2} - sqrt{3} ) }/{ 4 ( sqrt{3} - sqrt{2} ) }
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad = \ { 2 (-1)( sqrt{3} - sqrt{2} ) }/{ 4 ( sqrt{3} - sqrt{2} ) }
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad = \ { 2 (-1) color{red}cancel{ ( sqrt{3} - sqrt{2} ) } }/{ 4 color{red}cancel{ ( sqrt{3} - sqrt{2} ) } }
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad = \ { 2 (-1) }/{ 4 }
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad = \ - { 1 }/{ 2 }.
"This is our answer !!"
"So, we have found:"
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad { 2 sqrt{2} - 2 sqrt{3} }/{ 4 sqrt{3} - 4 sqrt{2} } \ = \ - { 1 }/{ 2 }.