How do you simplify #2(sqrt(5x) - 3)^2#?
1 Answer
Apr 16, 2017
Explanation:
We can rewrite the expression to specifically show all the terms:
Let's set aside the leading 2 for a minute and work with the two bracketed terms. We'll use FOIL to handle it:
FOIL
#color(red)(F)# - First terms -#(color(red)(a)+b)(color(red)(c)+d)# #color(brown)(O)# - Outside terms -#(color(brown)(a)+b)(c+color(brown)d)# #color(blue)(I)# - Inside terms -#(a+color(blue)b)(color(blue)(c)+d)# #color(green)(L)# - Last terms -#(a+color(green)b)(c+color(green)d)#
This gives us:
#color(red)(F)=>sqrt(5x)sqrt(5x)=5x# #color(brown)(O)=>sqrt(5x)(-3)=-3sqrt(5x)# #color(blue)(I)=>(-3)(sqrt(5x))=-3sqrt(5x)# #color(green)(L)=>(-3)(-3)=9#
And so
We can now distribute the 2 through the bracket: