How do you simplify 2(sqrt(5x) - 3)^2?

1 Answer

10x-12sqrt(5x)+18

Explanation:

We can rewrite the expression to specifically show all the terms:

2(sqrt(5x)-3)^2=2(sqrt(5x)-3)(sqrt(5x)-3)

Let's set aside the leading 2 for a minute and work with the two bracketed terms. We'll use FOIL to handle it:

FOIL

  • color(red)(F) - First terms - (color(red)(a)+b)(color(red)(c)+d)
  • color(brown)(O) - Outside terms - (color(brown)(a)+b)(c+color(brown)d)
  • color(blue)(I) - Inside terms - (a+color(blue)b)(color(blue)(c)+d)
  • color(green)(L) - Last terms - (a+color(green)b)(c+color(green)d)

This gives us:

  • color(red)(F)=>sqrt(5x)sqrt(5x)=5x
  • color(brown)(O)=>sqrt(5x)(-3)=-3sqrt(5x)
  • color(blue)(I)=>(-3)(sqrt(5x))=-3sqrt(5x)
  • color(green)(L)=>(-3)(-3)=9

5x-3sqrt(5x)-3sqrt(5x)+9=5x-6sqrt(5x)+9

And so 2(sqrt(5x)-3)^2=2(5x-6sqrt(5x)+9)

We can now distribute the 2 through the bracket:

2(5x-6sqrt(5x)+9)=color(blue)(ul(bar(abs(color(black)(10x-12sqrt(5x)+18))))