How do you simplify 18 /(sqrt(5) - 3 sqrt (5))?

1 Answer
Apr 21, 2016

= (- 9 sqrt5)/ 5

Explanation:

18 / ( sqrt5 - 3 sqrt5 )

Rationalizing the expression , by multiplying it with the conjugate of the denominator : color(blue)(sqrt5 + 3 sqrt5

(18 * (color(blue)(sqrt5 + 3 sqrt5) ))/ (( sqrt5 - 3 sqrt5 ) * color(blue)((sqrt5 + 3 sqrt5))

= (18 * (color(blue)(sqrt5)) + 18 * color(blue)((3 sqrt5)) )/ (( sqrt5 - 3 sqrt5 ) * color(blue)((sqrt5 + 3 sqrt5))

  • Applying property color(blue)((a-b)(a+b) = a ^2 - b^2 to the denominator.

= (18sqrt5 + 54sqrt5)/ (sqrt(5^2 )- (3 sqrt5 )^2 )

= (18sqrt5 + 54sqrt5)/ (5 - (9 * 5) )

= (18sqrt5 + 54sqrt5)/ (5 - 45)

= (18sqrt5 + 54sqrt5)/ (- 40)

= (sqrt5(18 + 54))/ (- 40)

= (sqrt5(72))/ (- 40)

= (sqrt5(cancel72))/ (- cancel40)

= (sqrt5(9))/ (- 5)

= (- 9 sqrt5)/ 5