How do you simplify #(15t^-4t^3)/(-3t^-2)#?

1 Answer
Feb 15, 2016

# = -5 t#

Explanation:

#(15t^-4t^3)/(-3t^-2)#

# = (15/-3) xx (t^-4t^3)/(t^-2)#

# = -5 xx (t^-4t^3)/(t^-2)#

As per property:
#1. color(blue)(a^m/a^n=a^(m-n)#

#2. color(blue)(a^m xx a^n=a^(m+n)#

Applying the above to exponents of #t#:
# = -5 xx (t^-4t^3)/(t^-2)#

# = -5 xx (t^(-4 +3))/(t^-2)#

# = -5 xx (t^(-1))/(t^-2)#

# = -5 xx t^(-1- (-2))#

# = -5 xx t^(-1+2)#

# = -5 xx t^1#

# = -5 t#