How do you simplify 1/(sqrt2+sqrt3)?

2 Answers

Multiply the denominator with sqrt3-sqrt2 to get

(sqrt3-sqrt2)/[(sqrt3+sqrt2)*(sqrt3-sqrt2)]= (sqrt3-sqrt2)/((sqrt3)^2-(sqrt2)^2)= (sqrt3-sqrt2)/(1)=sqrt3-sqrt2

Mar 1, 2018

(1)/(sqrt2+sqrt3)=color(blue)(sqrt3-sqrt2

Explanation:

Simplify:

(1)/(sqrt2+sqrt3)

Rationalize the denominator.

(1)/(sqrt2+sqrt3)xx(sqrt2-sqrt3)/(sqrt2-sqrt3)

Simplify.

(sqrt2-sqrt3)/(sqrt(2)^2-sqrt(3)^2)

Apply rule: sqrt(x)^2=x.

(sqrt2-sqrt3)/(2-3)

Simplify.

(sqrt2-sqrt3)/(-1)

Simplify.

-(sqrt2-sqrt3)

Simplify parentheses.

-sqrt2+sqrt3=

sqrt3-sqrt2