How do you simplify (1 - (sinx)^2) / (sinx - cscx)?

1 Answer
Jun 15, 2016

-sinx

Explanation:

Let's begin by simplifying the denominator of the fraction.

using cscx=1/(sinx)" we obtain"

sinx-1/sinx

which we require to express as a single fraction.

sinx xx(sinx/sinx)-1/sinx=sin^2x/sinx-1/sinx

We now have a common denominator of sinx

rArrsin^2x/sinx-1/sinx=(sin^2x-1)/sinx=(-(1-sin^2x))/sinx

The overall fraction is now

(1-sin^2x)/((-(1-sin^2x))/(sinx))

We can now invert the denominator and multiply

cancel(1-sin^2x)^1 xx(sinx)/-cancel((1-sin^2x)^1)

=sinx/(-1)=-sinx