How do you simplify (1 - (sinx)^2) / (sinx - cscx)?
1 Answer
Jun 15, 2016
-sinx
Explanation:
Let's begin by simplifying the denominator of the fraction.
using
cscx=1/(sinx)" we obtain"
sinx-1/sinx
which we require to express as a single fraction.
sinx xx(sinx/sinx)-1/sinx=sin^2x/sinx-1/sinx We now have a common denominator of sinx
rArrsin^2x/sinx-1/sinx=(sin^2x-1)/sinx=(-(1-sin^2x))/sinx The overall fraction is now
(1-sin^2x)/((-(1-sin^2x))/(sinx)) We can now invert the denominator and multiply
cancel(1-sin^2x)^1 xx(sinx)/-cancel((1-sin^2x)^1)
=sinx/(-1)=-sinx