How do you show that #f(x)=(x+3)/(x-2)# and #g(x)=(2x+3)/(x-1)# are inverse functions algebraically and graphically?
1 Answer
Jun 1, 2017
If
#f(f^-1(x)) = x#
So here we go:
#f(g(x)) = ((2x + 3)/(x - 1) + 3)/((2x + 3)/(x - 1) - 2)#
#f(g(x))= ((2x + 3 + 3x - 3)/(x -1))/((2x +3 - 2x + 2)/(x- 1))#
#f(g(x)) = (5x)/(x- 1) * (x -1)/(5)#
#f(g(x)) = (5x)/5#
#f(g(x)) = x#
This proves that
Hopefully this helps!