How do you rationalize the numerator for sqrt((1+siny)/(1-siny))1+siny1siny?

1 Answer
Sep 3, 2016

The expression can be simplified to (1 + siny)/cosy1+sinycosy.

Explanation:

sqrt(1 + siny)/sqrt(1 - siny)1+siny1siny

Multiply by the entire expression by the numerator to cancel the square root:

=sqrt(1 + siny)/sqrt(1 - siny) xx sqrt(1 + siny)/sqrt(1 + siny)=1+siny1siny×1+siny1+siny

=(1 + siny)/sqrt(1 - sin^2y)=1+siny1sin2y

This can be simplified further. Apply the pythagorean identity 1 - sin^2theta = cos^2theta1sin2θ=cos2θ.

=(1 + siny)/(sqrt(cos^2y)=1+sinycos2y

=(1 + siny)/(sqrt(cosy xx cosy))=1+sinycosy×cosy

=(1 + siny)/cosy=1+sinycosy

Hopefully this helps!