How do you rationalize the denominator & simplify (5 + sqrt3)/(2 -sqrt3)?

1 Answer
Apr 16, 2015

To rationalise the denominator, we multiply the Numerator and the Denominator of this fraction with the Conjugate of the Denominator

(5 + sqrt3)/(2 -sqrt3) * (2+sqrt3)/(2+sqrt3)

= ((5 + sqrt3)(2+sqrt3)) / ((2- sqrt 3)(2+sqrt3))

The Denominator is in the form color(blue)((a-b)*(a+b) which equals color(blue)(a^2 - b^2

= ((5 + sqrt3)(2+sqrt3)) /( 2^2 - (sqrt 3)^2)

= ((5 + sqrt3)(2+sqrt3)) /( 4 - 3)

= ((5 + sqrt3)(2+sqrt3)) / 1

= (5 + sqrt3)(2+sqrt3)

Using the Distributive Property of Multiplication we get:

= (5*2) + 5sqrt3 + 2sqrt 3 + (sqrt 3 * sqrt 3)

= 10 + 7sqrt 3 + 3

color(green)(= 13 + 7 sqrt 3