How do you rationalize the denominator for sqrt(cosx/tanx)?

1 Answer

sqrt((cosx/tanx)(1))=sqrt((cosx/tanx)(cotx/cotx))=sqrt(cosxcotx) = |cosx|sqrt(cscx)

Explanation:

Starting with the original:

sqrt(cosx/tanx)

At this point we can't do anything about the square root, so let's focus on getting the tangent ratio out from the denominator.

Remember that cotx=1/tanx, so we can:

sqrt((cosx/tanx)(1))=sqrt((cosx/tanx)(cotx/cotx))=sqrt(cosxcotx)

We can apply identities to simplify this:

sqrt(cosxcotx) = sqrt(cosx xx cosx/sinx) = sqrt(cos^2x/sinx) = |cosx|sqrt(1/sinx) = |cosx|sqrt(cscx)