To rationalize the denominator multiply the expression by #(7 - sqrt(x))/(7 - sqrt(x))#
#(7 - sqrt(x))/(7 - sqrt(x)) xx (x - 42)/(sqrt(x) + 7) - 7 =>#
#(7x - 294 - xsqrt(x) + 42sqrt(x))/(7sqrt(x) + 49 - x - 7sqrt(x)) - 7 =>#
#(7x - 294 - xsqrt(x) + 42sqrt(x))/(49 - x) - 7#
To subtract the #7# we need to put it over a common denominator:
#(7x - 294 - xsqrt(x) + 42sqrt(x))/(49 - x) - (7 xx (49 - x)/(49 - x)) =>#
#(7x - 294 - xsqrt(x) + 42sqrt(x))/(49 - x) - (343 - 7x)/(49 - x) =>#
#(7x - 294 - xsqrt(x) + 42sqrt(x) - 343 + 7x)/(49 - x) =>#
#(7x + 7x - xsqrt(x) + 42sqrt(x) - 294 - 343)/(49 - x) =>#
#(14x + (42 - x)sqrt(x) - 637)/(49 - x)#