How do you rationalize the denominator and simplify #(sqrtc-sqrtd)/(sqrtc+sqrtd)#?
1 Answer
Oct 3, 2015
Multiply numerator and denominator by
#(sqrt(c)-sqrt(d))/(sqrt(c)+sqrt(d)) = (c+d-2sqrt(cd))/(c-d)#
Explanation:
Use the difference of squares identity:
Also use
#(sqrt(c)-sqrt(d))/(sqrt(c)+sqrt(d))#
#= ((sqrt(c)-sqrt(d))(sqrt(c)-sqrt(d)))/((sqrt(c)-sqrt(d))(sqrt(c)+sqrt(d)))#
#= ((sqrt(c))^2-2(sqrt(c))(sqrt(d))+(sqrt(d))^2)/((sqrt(c))^2 - (sqrt(d))^2)#
#= (c+d-2sqrt(cd))/(c-d)#