How do you rationalize the denominator and simplify (sqrt6)/(sqrt5 - sqrt3)?

1 Answer
Mar 29, 2016

= (sqrt30 + 3sqrt2)/ 2

Explanation:

(sqrt6) / (sqrt5 - sqrt3)

Rationalizing the expression by multiplying the expression, by the conjugate of the denominator (sqrt5 + sqrt3).

(sqrt6 * color(blue)( (sqrt5 + sqrt3))) / ((sqrt5 - sqrt3) * color(blue)( (sqrt5 + sqrt3))

(sqrt6 * sqrt5 + sqrt6 * sqrt3)/ ((sqrt5 - sqrt3) * color(blue)( (sqrt5 + sqrt3))

Applying property : color(blue)((a-b)(a+b) = a ^2 - b ^2 , to the denominator.

= (sqrt30 + sqrt18)/ (sqrt5 ^ 2 - sqrt3 ^2 )

Simplifying sqrt 18= sqrt ( 2 * 3 * 3 ) = 3 sqrt2

= (sqrt30 + 3sqrt2)/ (5 - 3 )

= (sqrt30 + 3sqrt2)/ 2