How do you rationalize the denominator and simplify sqrt(3x)/(sqrtx-sqrt3)3xx3?

1 Answer
Jul 5, 2017

See a solution process below:

Explanation:

To rationalize the denominator multiply the expression by this form of 11:

(sqrt(x) + sqrt(3))/(sqrt(x) + sqrt(3))x+3x+3

(sqrt(x) + sqrt(3))/(color(red)(sqrt(x)) + color(red)(sqrt(3))) xx sqrt(3x)/(color(blue)(sqrt(x)) - color(blue)(sqrt(3))) =>x+3x+3×3xx3

(sqrt(3x)(sqrt(x) + sqrt(3)))/((color(red)(sqrt(x))color(blue)(sqrt(x))) - (color(red)(sqrt(x))color(blue)(sqrt(3))) + (color(red)(sqrt(3))color(blue)(sqrt(x))) - (color(red)(sqrt(3))color(blue)(sqrt(3)))) =>3x(x+3)(xx)(x3)+(3x)(33)

(sqrt(3x)(sqrt(x) + sqrt(3)))/(x - (color(blue)(sqrt(3))color(red)(sqrt(x))) + (color(red)(sqrt(3))color(blue)(sqrt(x))) - 3) =>3x(x+3)x(3x)+(3x)3

(sqrt(3x)(sqrt(x) + sqrt(3)))/(x - 0 - 3) =>3x(x+3)x03

(sqrt(3x)(sqrt(x) + sqrt(3)))/(x - 3) =>3x(x+3)x3

Now, we can work on simplifying the numerator:

(color(red)(sqrt(3x))(sqrt(x) + sqrt(3)))/(x - 3) =>3x(x+3)x3

((color(red)(sqrt(3x)) xx sqrt(x)) + (color(red)(sqrt(3x)) xx sqrt(3)))/(x - 3) =>(3x×x)+(3x×3)x3

(sqrt(3x^2) + sqrt(9x))/(x - 3) =>3x2+9xx3

(sqrt(3)x + 3sqrt(x))/(x - 3)3x+3xx3