How do you rationalize the denominator and simplify sqrt(12x^3)/sqrt(7y^5)?

1 Answer
Mar 23, 2016

sqrt(12x^3)/sqrt(7y^5)= 2sqrt(21x^3y^5)/(7y^5)

Or more simplified:

sqrt(12x^3)/sqrt(7y^5)=(2x)/(7y^3)*sqrt(21xy)

Explanation:

To rationalize your expression, the idea is to multiply it by a therm that doesn't change it but cancels the sqrt() at the denominator.

Therefore:

sqrt(12x^3)/sqrt(7y^5)=sqrt(12x^3)/sqrt(7y^5)*sqrt(7y^5)/sqrt(7y^5)=

=(sqrt(12x^3)*sqrt(7y^5))/(sqrt(7y^5*7y^5))=

=sqrt(12x^3*7y^5)/(sqrt((7y^5)^2))=sqrt(3*2^2*7x^3y^5)/(7y^5)=2sqrt(21x^3y^5)/(7y^5)

Now you can more simplify the results:

2sqrt(21x^3y^5)/(7y^5)=2sqrt(21x^2*x*y^4*y)/y^5=2xcancel(y^2)sqrt(21xy)/(7y^(cancel(5)^3))=
=(2x)/(7y^3)*sqrt(21xy)