How do you rationalize the denominator and simplify root3( (1 / (2x^2)))?

1 Answer
Aug 20, 2017

You ul("force") it into something you can take the cube root of.

=root(3)(4x)/(2x)

Explanation:

Multiply by 1 and you do not change the intrinsic value. However, 1 comes in many forms

color(green)(root(3)(1/(2x^2)color(red)(xx1)))

2xx2^2=2^3

x^2xx x^2xx x^2 =x^2xx(x^2)^2 = (x^2)^3

color(green)(root(3)(1/(2x^2)color(red)(xx(2^2(x^2)^2)/(2^2(x^2)^2))))" "->" "root(3)((4x^4)/(2^3(x^2)^3))

color(white)("vvvvvvvvvvvvvvv")->" "root(3)(4x^4)/(2x^2)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Simplified further

x^4->x^3xx x" " so we can change the 4x^4 such that we have:

(xroot(3)4x)/(2x^2) = x/x xxroot(3)(4x)/(2x)

=root(3)(4x)/(2x)