How do you rationalize the denominator and simplify h / (sqrtx - sqrt( x+h))h√x−√x+h?
1 Answer
Apr 24, 2016
h/(sqrt(x)-sqrt(x+h))=-(sqrt(x)+sqrt(x+h))h√x−√x+h=−(√x+√x+h)
Explanation:
The difference of squares identity can be written:
a^2-b^2=(a-b)(a+b)a2−b2=(a−b)(a+b)
We use this with
Multiply numerator and denominator by
h/(sqrt(x)-sqrt(x+h))h√x−√x+h
=(h(sqrt(x)+sqrt(x+h)))/((sqrt(x)-sqrt(x+h))(sqrt(x)+sqrt(x+h))=h(√x+√x+h)(√x−√x+h)(√x+√x+h)
=(h(sqrt(x)+sqrt(x+h)))/((sqrt(x))^2-(sqrt(x+h))^2)=h(√x+√x+h)(√x)2−(√x+h)2
=(h(sqrt(x)+sqrt(x+h)))/(x-(x+h))=h(√x+√x+h)x−(x+h)
=(color(red)(cancel(color(black)(h)))(sqrt(x)+sqrt(x+h)))/(-color(red)(cancel(color(black)(h))))
=-(sqrt(x)+sqrt(x+h))