How do you rationalize the denominator and simplify #h / (sqrtx - sqrt( x+h))#?
1 Answer
Apr 24, 2016
#h/(sqrt(x)-sqrt(x+h))=-(sqrt(x)+sqrt(x+h))#
Explanation:
The difference of squares identity can be written:
#a^2-b^2=(a-b)(a+b)#
We use this with
Multiply numerator and denominator by
#h/(sqrt(x)-sqrt(x+h))#
#=(h(sqrt(x)+sqrt(x+h)))/((sqrt(x)-sqrt(x+h))(sqrt(x)+sqrt(x+h))#
#=(h(sqrt(x)+sqrt(x+h)))/((sqrt(x))^2-(sqrt(x+h))^2)#
#=(h(sqrt(x)+sqrt(x+h)))/(x-(x+h))#
#=(color(red)(cancel(color(black)(h)))(sqrt(x)+sqrt(x+h)))/(-color(red)(cancel(color(black)(h))))#
#=-(sqrt(x)+sqrt(x+h))#