How do you rationalize the denominator and simplify (5sqrt3-3sqrt2)/(3sqrt2-2sqrt3)53323223?

2 Answers

Rewrite this as follows

(5sqrt3-3sqrt2)/(3sqrt2-2sqrt3)=[sqrt3*(5-sqrt3*sqrt2)]/[sqrt3*sqrt2*[sqrt3-sqrt2]]= 1/sqrt2*[5-sqrt3*sqrt2]/[sqrt3-sqrt2]53323223=3(532)32[32]=1253232

Multiply denominator and nominator with sqrt3+sqrt23+2 hence

1/sqrt2*[5-sqrt3*sqrt2]/[sqrt3-sqrt2]=1/sqrt2*[(5-sqrt3*sqrt2)*(sqrt3+sqrt2)]/[(sqrt3-sqrt2)*(sqrt3+sqrt2)]= 1/(sqrt2)*[(5-sqrt3*sqrt2)*(sqrt3+sqrt2)]= 1/(sqrt2)*[2sqrt2+3sqrt3]1253232=12(532)(3+2)(32)(3+2)=12[(532)(3+2)]=12[22+33]

Mar 18, 2016

Multiply the numerator & denominator by the conjugate of the denominator.

Explanation:

Anytime you have "square root plus something" in the denominator, you multiply both num & denom by it's conjugate, i.e. change the sign in the middle.

3sqrt(2)+2sqrt(3)32+23

So the new denominator is
( 3sqrt(2)-2sqrt(3)3223 ) * (3sqrt(2)+2sqrt(3)32+23) = 9(2)-4(3)=69(2)4(3)=6, using (A+B)(A-B) = A^2-B^2(A+B)(AB)=A2B2

The new numerator is (5sqrt(3)-3sqrt(2))(3sqrt(2)+2sqrt(3))(5332)(32+23)
which (after FOIL) is
15sqrt(6)+10(3)-9(2)-6sqrt(6)156+10(3)9(2)66 = =9sqrt(6)+12=96+12
So over the new denominator we have
=(9sqrt(6)+12)/6=96+126=(3sqrt(6)+4)/236+42