How do you rationalize the denominator and simplify 5/(sqrt14-2)?

1 Answer
May 9, 2018

\frac{5\sqrt{14}+10}{10}

Explanation:

Use the identity (a-b)(a+b)=a^2-b^2 in the following way:

\frac{5}{\sqrt{14}-2} = \frac{5}{\sqrt{14}-2} \cdot 1 = \frac{5}{(\sqrt{14}-2)} \cdot \frac{(\sqrt{14}+2)}{(\sqrt{14}+2)}

Now, the numerator is simply 5(\sqrt{14}+2) = 5\sqrt{14}+10, while at the denominator we have the forementioned identity:

(\sqrt{14}-2)(\sqrt{14}+2) = (\sqrt{14})^2 - 2^2 = 14-4 = 10