How do you rationalize the denominator and simplify (3+sqrt18) /( 1 + sqrt8 )?

2 Answers
Jul 15, 2016

3/7(3+sqrt(2)) larr" corrected solution"

Explanation:

A very useful relationship to remember is a^2-b^2=(a-b)(a+b)
In the context of this question we can change
1+sqrt(8)" to "1^2-(sqrt(8))^2

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Multiply by 1 but in the form of 1= (1-sqrt(8))/(1-sqrt(8))

" "color(red)("Error - should be "sqrt(18))
" "color(red)(darr)
cancel(((3+color(red)(sqrt(8)))(1-sqrt(8)))/((1+sqrt(8))(1-sqrt(8))))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(green)("Corrected!!!")

((3+sqrt(18))(1-sqrt(8)))/((1+sqrt(8))(1-sqrt(8))) = (3-3sqrt(8)+sqrt(18)-sqrt(8xx18))/(1-8)

=(3-3sqrt(2xx2^2)+ sqrt(2xx3^2)- sqrt(2xx2^2xx2xx3^2))/(-7)

=(3-6sqrt(2)+3sqrt(2)-12)/(-7)

=(-9-3sqrt(2))/(-7)" "=" "+3/7(3+sqrt(2))

Got there in the end! Amazing how much a typo can mess things up!

Jul 15, 2016

3/7(3+sqrt2)

Explanation:

Rationalisation factor of a+sqrtb is a-sqrtb and vice-versa.

Given Exp. =(3+sqrt18)/(1+sqrt8)=(3+sqrt(9*2))/(1+sqrt(4*2))

=(3+3sqrt2)/(1+2sqrt2)

Multiplying, in Nr. & Dr by the rationalisation factor of Dr., i.e., by(1-2sqrt2), the Exp.

={(3+3sqrt2)(1-2sqrt2)}/{(1+2sqrt2)(1-2sqrt2)},

={3+3sqrt2-6sqrt2-6*2}/{1^2-(2sqrt2)^2},

=(-9-3sqrt2)/(1-8),=3/7(3+sqrt2).