How do you rationalize the denominator and simplify #2/(sqrt6-sqrt5)#?
1 Answer
Mar 14, 2016
#2/(sqrt(6)-sqrt(5))=2(sqrt(6)+sqrt(5))#
Explanation:
Note the difference of squares identity:
#a^2-b^2=(a-b)(a+b)#
We use this with
Multiply both numerator and denominator by
#2/(sqrt(6)-sqrt(5))=2/(sqrt(6)-sqrt(5))*(sqrt(6)+sqrt(5))/(sqrt(6)+sqrt(5))#
#=(2(sqrt(6)+sqrt(5)))/(6-5)#
#=2(sqrt(6)+sqrt(5))#