How do you rationalize the denominator and simplify 2/(sqrt3+sqrt2)?

1 Answer
Mar 26, 2016

= 2(sqrt3 - sqrt2)

Explanation:

2 / (sqrt3 + sqrt2)

We rationalise the expression by multiplying it with the conjugate of the denominator.

Conjugate of color(blue)(sqrt3 + sqrt 2= sqrt 3 - sqrt2

(2 * color(blue)((sqrt 3 - sqrt2))) / ((sqrt3 + sqrt2) * color(blue)((sqrt 3 - sqrt2))

  • Applying property :- color(green)((a+b)(a-b) = a^2 - b^2, to the denominator.

=(2 * color(blue)((sqrt 3)) + 2 * color(blue)( (- sqrt2))) / ((sqrt3)^2 - (sqrt2)^2

= (2sqrt3 - 2sqrt2) / ( 3-2)

= (2(sqrt3 - sqrt2)) / 1

= 2(sqrt3 - sqrt2)