How do you rationalize the denominator and simplify 2/(sqrt3+sqrt2)?

1 Answer
Jan 15, 2017

(2)/(sqrt3+sqrt2)=2(sqrt3-sqrt2)

Explanation:

Simplify (2)/(sqrt3+sqrt2)

Rationalize the denominator using the difference of squares, a^2-b^2=(a+b)(a-b), where a=sqrt3 and b=sqrt2.

(2)/((sqrt3+sqrt2))*((sqrt3-sqrt2))/((sqrt3-sqrt2))=

(2(sqrt3-sqrt2))/((sqrt3+sqrt2)(sqrt3-sqrt2))=

(2(sqrt3-sqrt2))/(sqrt3^2-sqrt2^2)=

Apply the rule sqrt(a)^2=a

(2(sqrt3-sqrt2))/(3-2)=

(2(sqrt3-sqrt2))/1=

2(sqrt3-sqrt2)