How do you rationalize the denominator and simplify 1/(sqrta+sqrtb+sqrtc)1a+b+c?

1 Answer
Sep 27, 2015

Multiply numerator and denominator by:

(-sqrt(a)+sqrt(b)+sqrt(c))(sqrt(a)-sqrt(b)+sqrt(c))(sqrt(a)+sqrt(b)-sqrt(c))(a+b+c)(ab+c)(a+bc)

Explanation:

For brevity, write:

alpha = sqrt(a)α=a
beta = sqrt(b)β=b
gamma = sqrt(c)γ=c

Multiply numerator and denominator by:

(-alpha+beta+gamma)(alpha-beta+gamma)(alpha+beta-gamma)(α+β+γ)(αβ+γ)(α+βγ)

Multiplied out in full, that is:

-alpha^3-beta^3-gamma^3+alpha^2beta+beta^2gamma+alphagamma^2+alphabeta^2+betagamma^2+alpha^2gamma-2alphabetagammaα3β3γ3+α2β+β2γ+αγ2+αβ2+βγ2+α2γ2αβγ

The denominator is:

(alpha+beta+gamma)(-alpha^3-beta^3-gamma^3+alpha^2beta+beta^2gamma+alphagamma^2+alphabeta^2+betagamma^2+alpha^2gamma-2alphabetagamma)(α+β+γ)(α3β3γ3+α2β+β2γ+αγ2+αβ2+βγ2+α2γ2αβγ)

=-alpha^4-beta^4-gamma^4+2alpha^2beta^2+2beta^2gamma^2+2alpha^2gamma^2=α4β4γ4+2α2β2+2β2γ2+2α2γ2

=2ab+2bc+2ac-a^2-b^2-c^2=2ab+2bc+2aca2b2c2

So we can write:

1/(sqrt(a)+sqrt(b)+sqrt(c))1a+b+c

=((-sqrt(a)+sqrt(b)+sqrt(c))(sqrt(a)-sqrt(b)+sqrt(c))(sqrt(a)+sqrt(b)-sqrt(c)))/(2ab+2bc+2ac-a^2-b^2-c^2)=(a+b+c)(ab+c)(a+bc)2ab+2bc+2aca2b2c2

or if you prefer:

=((b+c-a)sqrt(a)+(a+c-b)sqrt(b)+(a+b-c)sqrt(c)-2sqrt(a)sqrt(b)sqrt(c))/(2ab+2bc+2ac-a^2-b^2-c^2)=(b+ca)a+(a+cb)b+(a+bc)c2abc2ab+2bc+2aca2b2c2